POULTRY EGGS DETECTION APPLICATIONS IN THE AUTOMATIC PACKAGING CONTROL PROCESS BY YOLO MODEL

  • Nguyen Huy Cong National Center for Technological Progress
  • Doan Hong Quang National Center for Technological Progress
  • Le Hong Minh National Center for Technological Progress
  • Nguyen Huy Hung National Center for Technological Progress
  • Dang Anh Duc National Center for Technological Progress
  • Nguyen Chi Long National Center for Technological Progress
  • Nguyen Huy Khan National Center for Technological Progress
  • Nguyen Tuan Hung National Center for Technological Progress

Abstract

Egg detection plays an important role in the poultry farming industry utilizing high technology. In the poultry farms producing eggs, the stages of automatically placing eggs into trays require extra steps to
count the number of eggs as well as to detect faulty eggs (baby eggs, broken eggs, etc.). In addition, egg inspections to ensure sufficient quantity and support reporting are necessary for trading and distributing companies. In order to address these challenges, the authors propose an improved YOLOv3 model for egg detection by processing data obtained from surveillance cameras.

References

Đoàn Hồng Quang, “Phát hiện cháy rừng bằng mạng nơ ron học sâu, dựa trên khói và lửa thu nhận được từ camera giám sát”. Tạp chí Khoa học và Công nghệ, Trường Đại học Sư phạm Kỹ thuật Hưng Yên, 2020, 26, tr. 92-99.

Đoàn Hồng Quang, Lê Hồng Minh, Thái Doãn Nguyên, “Nhận dạng khuôn mặt trong video bằng mạng nơ ron tích chập”. Tạp chí Khoa học và Công nghệ Việt Nam, Bộ Khoa học và Công nghệ, 2020, 62(1) 1.2020, tr. 8-12.

Đoàn Hồng Quang, Nguyễn Huy Công, “Phân loại hoa quả bằng mạng nơ ron học sâu”, Hội thảo “Ứng dụng công nghệ cao trong phát triển kinh tế - xã hội”, Viện Ứng dụng Công nghệ, Bộ Khoa học và Công nghệ, 2019, tr. 132-142.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection With Region Proposal Networks”. IEEE Trans. Pattern Anal. Mach. Intell., June 2017, 39(6), pp. 1137–1149.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, Scott Reed4, Cheng-Yang Fu1, Alexander C. Berg, “SSD: Single Shot MultiBox Detector”, arXiv:1512.02325v5 [cs.CV] 29 Dec 2016.

S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd: Single Shot Multibox Detector”. In European Conference on Computer Vision, 2016, pp. 21–37. Springer.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only Look Once: Unified, Real-Time Object Detection” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 779– 788.

R. B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun, “Faster R-CNN: Towards Real-Time

Object Detection With Region Proposal Networks”, arXiv:1506.01497v3 [cs.CV] 6 Jan 2016.

J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeulders, “Selective search for object recognition”. International Journal of Computer Vision (IJCV), 2013.

Redmon, J. & Farhadi, A. Yolo9000: Better, Faster, Stronger, 2017, arXiv preprint, 1612.08242 .

Redmon, J. & Farhadi, A. Yolov3: An Incremental Improvement, 2018, arXiv preprint, 1804.02767.

Published
2022-03-31