A STUDY ON CHIP SHRINKAGE COEFFICIENT DURING MACHINING SKD11 STEEL
Abstract
The paper studies the influence of some technological parameters like cutting speed, cutting depth, and geometrical parameters of the cutting tool as rake angle on the chip shrinkage coefficient when machining SKD11 steel. The studies with changing a parameter are first performed to evaluate the effect of a single parameter on chip shrinkage coefficient. Then, the design of experiment Taguchi and analysis of variance ANOVA method are used to design experiments and evaluate the order of influence of parameters when milling SKD11 steel. The results show that the chip shrinkage coefficient increases when increasing cutting depth, the rake angle of the cutting tool, and temperature. But the chip shrinkage coefficient decreases when increasing cutting speed. The optimal set of parameters obtains when thermal-assisted milling SKD11 are 280 m/min of the cutting speed, 0.5 mm of the cutting depth, 5o of the rake angle, and 25 oC of temperature. Finally, a model of chip shrinkage coefficient when thermal–assisted milling SKD11 is built to predict the chip shrinkage coefficient at different machining conditions.
References
C. Brecher, C. J. Rosen, and M. Emonts, “Laser-assisted milling of advanced materials”. Phys. Procedia, vol. 5, no. PART 2, 2010, pp. 259–272, doi: 10.1016/j.phpro.2010.08.052.
A. K. M. Nurul Amin and T. L. Ginta, Heat-Assisted Machining, vol. 11, 2014, Elsevier.
K. Sadeghipour, J. A. Dopkin, and K. Li, “A computer aided finite element/experimental analysis of induction heating process of steel”. Comput. Ind., vol. 28, no. 3, 1996, pp. 195–205, doi: 10.1016/0166-3615(95)00072-0.
T. H. Pham, T. B. Mac, V. C. Tong, T. L. Banh, and D. T. Nguyen, “Simulation and experimental studies to verify the effect of cutting parameters on chip shrinkage coefficient and cutting forces in machining of A6061 aluminum alloy”. Adv. Mech. Eng., vol. 8, no. 10, 2016, pp. 1–11, doi: 10.1177/1687814016673297.
P. Thi-Hoa, M. Thi-Bich, T. Van-Canh, B. Tien-Long, and N. Duc-Toan, “A study on the cutting force and chip shrinkage coefficient in high-speed milling of A6061 aluminum alloy”. Int. J. Adv. Manuf. Technol., vol. 98, no. 1–4, 2018, pp. 177–188, doi: 10.1007/s00170-017-1063-x.
T. B. Mac, T. L. Banh, and D. T. Nguyen, “Study on cutting force and chip shrinkage coefficient during thermal - Assisted machining by induction heating of SKD11 steel”. J. Korean Soc. Precis. Eng., vol. 36, no. 9, 2019, pp. 803–811, doi: 10.7736/KSPE.2019.36.9.803.
Z. Huang, L. Gao, Y. Wang, and F. Wang, “Determination of the Johnson-Cook Constitutive Model Parameters of Materials by Cluster Global Optimization Algorithm”. J. Mater. Eng. Perform., vol. 25, no. 9, 2016, pp. 4099–4107, doi: 10.1007/s11665-016-2178-1.
M. Calamaz, D. Coupard, and F. Girot, “A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti-6Al-4V”. Int. J. Mach. Tools Manuf., vol. 48, no. 3–4, 2008, pp. 275–288, doi: 10.1016/j.ijmachtools.2007.10.014.
G. Chen, C. Ren, X. Yang, X. Jin, and T. Guo, “Finite element simulation of high-speed machining of titanium alloy (Ti-6Al-4V) based on ductile failure model”. Int. J. Adv. Manuf. Technol., vol. 56, no. 9–12, 2011, pp. 1027–1038, doi: 10.1007/s00170-011-3233-6.
C. Wang, Y. Xie, L. Zheng, Z. Qin, D. Tang, and Y. Song, “Research on the Chip Formation Mechanism during the high-speed milling of hardened steel”. Int. J. Mach. Tools Manuf., vol. 79, pp. 31–48, 2014, doi: 10.1016/j.ijmachtools.2014.01.002.
M. A. U. Patwari, A. K. M. N. Amin, and W. F. Faris, “Influence of chip serration frequency on chatter formation during end milling of Ti6Al4V”. J. Manuf. Sci. Eng. Trans. ASME, vol. 133, no. 1, 2011, doi: 10.1115/1.4003478.
R. K. Roy, “A primer on the Taguchi method”. Soc. Manuf. Eng. Dearborn, 1990, Michigan.