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Abstract:
In this paper, we study the Young type inequality and the generalized convolution transform for the 

discrete-time Fourier sine generalized convolution. Solution in closed form for some clases of the Toeplitz 
plus Hankel equation related to the discrete-time Fourier sine generalized convolution are considered.
Keywords: Fourier cosine Series, Fourier sine Series, Discrete Convolution, Discrete Young’s Inequality, 
Discrete Toeplitz Plus Hankel Equation.

1. Introduction
The discrete-time Fourier transform is a 

transformation that maps discrete-time signal x(n) 
into a complex-valued function of the real variable, 
namely [1, 2, 3].
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The discrete-time Fourier convolution of x(n) 
and y(n) is a sequence, denotes by *( )x y

F
 and be 

defined as follows [1, 2]
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However, particular case of discrete-time 
Fourier transform is a discrete-time Fourier cosine 
and discrete-time Fourier sine transforms have not 
been studied.

Recently, we studied discrete-time Fourier 
cosine transform on N0  (see [4])
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Constructed the commutative convolution has 
the form (see [4])
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which has the following property
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Here, we will establish Young type inequality 
for the convolution on N0  with the sharp constant in 
two important cases p = q = 1 and p = q = 2.

The Toeplitz plus Hankel integral equation is 
of the form (see [5, 6])
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here g, k1, k2 are given and f is a unknown function.
When in discrete form, the equation (1.6) has 

the form
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with k1, k2, g are given and x is a unknown sequence.
For other examples of discrete-time Toeplitz-

Hankel equations that can be solved in closed form 
see [2]. A special case of equation (1.7) with the 
Toeplitz kernel k2 (n) = k(|n|), and the Hankel kernel 
k1 (n) = k(n) has been studied in [4]
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Under certain conditions, the equation (1.8) 

has the unique solution in l1(N0) (see [4]).

2. Discrete-time Fourier sine transform and  
inequalities

The discrete-time Fourier sine transform of a 
sequence : { ( )}x x n n 1= $  is defined by
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with a norm in ( ),l p1Np
0

0 31#  its subspace of 
(1.3) when x(0) = 0.
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and || | | | | | | .X xs 1#3  And if ( )x l N20 0! , then 

( , )X L 0s 2! r , and the Parseval formula for the 
discrete-time Fourier sine transform yields
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Definition 1. The generalized convolution  x * y of 
sequences x and y for the discrete-time Fourier sine 
and Fourier cosine transforms is defined by
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if series converges for any n 0$ .

Theorem 1. If ( )x l N20 0!  and ( )y l N2 0! . Then 
the discrete convolution (2.3) belongs to the space 

( )l N0 03 , and moreover,
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The following Parseval formula holds
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Theorem 2. (A discrete Young’s type theorem).  
Let p, q, r > 1, satisfy the condition ( )x l Np 0! , 

( )y l Nq 0! , ( )h l Nr 0! , p q r
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Corollary 1 (A discrete Young’s type inequality). 

Let p, q, r > 1, satisfy the condition p q r
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Theorem 3. Assume that ( )x l N10 0! , ( )y l N1 0!  
and x(0) = 0. Then ( * ) ( )x y l N10 0! , and  
factorization equality holds
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The equality holds if both x and y are nonnegative 
(nonpositive) sequences.

3. A discrete Toeplitz plus Hankel equation
We consider the Toeplitz plus Hankel equation
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in case the kernel sequences k1, k2 are arbitrary 
and right-hand side satisfies a certain condition. 
Namely, we obtain the following theorem.
Theorem 4. Given that , , , (N ),g g k k l   1 2 1 2 1 0!  
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here l l N1 0! _ i is defined by
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 Then the integral equation (3.1) has the unique 
solution in l l N1 0! _ i, which is of the form:
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Proof. Extend g1 to the whole Z  as an odd sequence,   
x, g2 as even sequences, and extend g to the whole   
Z  by the rule ( ) ( ) ( )g n g n g n1 2= + . Equation (3.1) 
can be rewritten in the form
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Applying the discrete-time Fourier transform 
to both sides of equation (3.4) and note that 
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Recall that g(n) = g1(n) + g2(n), where g1 , g2 

respectively are even and odd components of g. 
Therefore x is a solution of equation (3.5) if and 
only if the both of following conditions are satisfied
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Equation (3.7) can be rewritten in the form
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In virtue of the Wiener-Levy’s type Theorem 
for Fourier cosine series (see [4]), by the given 
condition (3.2), there exists a unique sequence  

( )l l N1 0!  such that
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Therefore, from (3.8) we have
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Therefore,
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From (3.5), (3.6), (3.7) and (3.9) we obtain solution 
of equation (3.1) in l l N1 0! _ i in this form
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The proof is completed.
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BẤT ĐẲNG THỨC TÍCH CHẬP SUY RỘNG FOURIER THỜI GIAN RỜI RẠC
VÀ PHƯƠNG TRÌNH TOEPLITZ CỘNG HANKEL

Tóm tắt:
Trong bài báo này, chúng tôi nghiên cứu bất đẳng thức kiểu Young và biến đổi tích chập suy rộng cho 

tích chập Fourier sine thời gian rời rạc. Ứng dụng giải một lớp phương trình Toeplitz cộng Hankel liên 
quan tới tích chập suy rộng Fourier tời gian rời rạc.
Keywords: Chuỗi Fourier cosine, Chuỗi Fourier sine, Tích chập rời rạc, Bất đẳng thức Young’s rời rạc,  
Phương trình Toeplitz cộng Hankel rời rạc.


